
2912 THE CRYSTAL S T R U C T U R E  OF G L Y C Y L G L Y C I N E  P H O S P H A T E  M O N O H Y D R A T E  

peptide bonds. However, the hydrogen bonding 
scheme in the glycylglycine phosphate structure ap- 
pears to be largely dominated by the phosphate-car- 
boxyl and phosphate-phosphate interactions. It is pos- 
sible that, in the absence of a terminal carboxyl group, 
phosphate-carbonyl hydrogen bonding would be an 
important mode of phosphate-peptide binding. We 
are currently investigating this possibility. 
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CA-  12159, DE-02670 and R R -  145. We thank Miss 
Catherine Sims for assistance with the preparation of 
this manuscript. 
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Crystal Structure Determination of Valinomycin by Direct Methods 
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The application to the phase determination for valinomycin of the recently devised method of strong 
enantiomorph discrimination via the calculated values of the cosine invariants is described. The initial 
552 term E map revealed 74 of the 78 nonhydrogen atoms in the structure. 

1, Introduction 

Crystal structure determination by direct methods is 
strongly dependent on the tangent formula (Karle & 
Hauptman, 1956), which in turn requires firstly the 
evaluation of a more or less broad base of phases. In 
recent attempts to strengthen the method by solving 
the latter problem (Hauptman, Fisher, Hancock & 
Norton, 1969) a least-squares procedure based on an 
improved method for calculating the values of the 
cosine invariants was employed. A total of four non- 
centrosymmetric structures have been solved by this 
technique. Recent improvements, both in the evalua- 
tion of the cosine invariants and in the implementation 
of the calculated cosines, have led to the solution of 
some dozen additional noncentrosymmetric crystal 
structures. However, it has become increasingly ap- 
parent that still better procedures for implementing 
calculated cosine invariants will be needed in order to 

tackle successfully non-centrosymmetric structures of 
great complexity. To this end a method for strong 
enantiomorph discrimination based on a suitably 
chosen class of several structure invariants, each ap- 
proximately equal to + n/2, rather than only a single 
such invariant, has been recently devised (Hauptman 
& Duax, 1972). 

The method is strongly dependent on the calculated 
values of certain cosine invariants, in particular in- 
variants of special, well defined types, and the further 
analysis and interpretation of these invariants. It 
requires the identification of two (orthogonal) Classes, 
I and II, of phases ~Ohkt, with fixed k, such that: (1) any 
two phases in Class I differ from each other by 0 or n, 
approximately; (2) any two phases in Class II differ 
from each other by 0 or n, approximately; (3) (ortho- 
gonality property) any phase in Class I differs from any 
phase in Class II by n/2, approximately. In addition, 
the associated values of the normalized structure factor 
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magnitudes, E, are required to be large. Employing 
the phases of these two classes, it is possible to con- 
struct a class, C, of cosine invariants each of which is 
approximately equal to zero. The corresponding struc- 
ture invariants, each approximately equal to +n/2, 
are then used for decisive enantiomorph discrimina- 
tion. 

Three successful applications of this procedure have 
now been made. The present paper is devoted to a 
description of the application to the phase determina- 
tion for valinomycin, C54N6OlsH90, space group P21. 

determination. For the purpose of comparison, the 
last column of Table 1 contains the true values of the 
cosine invariants as obtained from the refined struc- 
ture. Using identities among the cosine invariants 
(Karle & Hauptman, 1957; Hauptman, 1970), im- 
proved values for a number of these cosines (e.g. 
3305) were obtained which, however, are not shown in 
Table 1. Although the better values were for the most 
part not essential for the present structure determina- 
tion, these improvements would clearly facilitate the 
solution of more complex structures. 

2. Calculated values of the required cosine 
invariants, cos (~1 + ~27 t" (1)3) 

The values of some 3000 cosine invariants 

where 
cos (9,~ +9'2 +9'a) (2"1) 

9,j = 9,n j, J =  1,2, 3 ,  (2"2) 

hi+ h2 + h3 = 0 ,  (2"3) 

and 9,h is the phase of the normalized structure factor 
Eu, were calculated by the recently established method 
of Hauptman et al. (1969; but see Hauptman, 1970, 
for further details). 73 of these cosines, which consti- 
tute the hard core of those needed in the phase deter- 
mination process, are listed in Table 1. In addition, 
some 80 cosines played a secondary role in that they 
provided supporting evidence for the identification of 
the orthogonal classes and aided in the interpretation 
of the results of the tangent procedures. The param- 
eter A is defined by 

2~3 
A =  -~z/r [EIE2E3[ zO'15861EIEzE31, (2.4) 

where 
Ej=Eh~, j =  1,2,3,  (2.5) 

N 

~ . =  ~ Z~,  (2.6) 
] = 1  

Zj is the atomic number of the jth atom, and N is the 
number of atoms in the unit cell. (If there is no heavy 
atom present, then 

t;3 1 
~/2. .~ U~/2 (2"7) 

where N is the number of nonhydrogen atoms in the 
unit cell). Only the cosines with A values greater than 
1.5 were calculated. With rare but important excep- 
tions, only those cosines were used whose calculated 
values were close to or greater than one, the presump- 
tion being that the true values of these cosines were 
then very likely equal to unity, at least approximately, 
and the identification of these cosines was an important 
feature of the method. However, the four cosine in- 
variants with serial numbers 636, 1669, 1760, 2315 
(Table 1) were calculated to be small or negative and 
these played a crucial role in the process of phase 

Table 1. Calculated values of  cosine invariants, 
cos (9,1 + 9,2 + 9,3) 

Serial Calculated True 
number ~i ~2 g3 A cosine cosine 

423 i-~4 1 i0 4 I--O 1 0 9 1.544 +2.02 +0.947 
557 0 8 0 16 4 9 16 4 9 1.562 +2.14 +0.992 
598 i 4 2 16 4 9 17 0 ii 1.568 +1.34 +0.963 
636 4 4 3 9 4 i0 13 0 7 1.572 +0.30 +0.602 
977 1 4 2 ll 4 1 i0 0 1 1.618 +1.03 +0.992 

1115 0 8 0 i0 4 i0 i0 4 i0 1.640 +1.61 +0.675 
1415 19 4 7 1 4 2 20 0 9 1.694 +1.87 +0.962 
1669 0 8 0 5 4 3 5 4 3 1.743 -0.23 -0.888 
1760 0 8 0 9 41-O 9 4 10 1.763 +0.16 -0.689 
1876 o 8 0 17 4 7 ~4 7 1.796 +i.06 +0.993 
2016 21 3 7 17 3 0 4 0 7 1.832 +1.44 +0.999 
2050 i i  3 4 18 3 9 7 0 5 1.842 +1.16 +0.969 
2212 12 1 4 5 0 2 Z ~ ~ 1.892 +1.75 +0.999 
2223 7 3 2 0 2 0 7 1 2 1.898 +1.30 +0.963 
2230 10 i 4 _~Yr ~ ~ z 1.901 +1.22 +0.944 
2267 0 8 0 ii 4 1 ii 4 i 1.914 +1.44 +0.983 
2279 8 1 ii 4 0 7 i--2[ 4 1.917 +1.85 +0.997 
2315 0 8 0 2"-1'4 5 21 ~ 5 1.931 -0.85 -0.860 
2329 14 3 2 2~0 4 7 3 2 1.938 +1.47 +0.915 
2534 6 I 7 ~ 0 5 i 1 2 2.018 +1.34 +0.909 
2564 9 1 1 4 [ 0 5 0 1 2.031 +1.27 +0.955 
2599 ii 4 10 14 4 8 3 0 2 2.059 +1.69 +0.986 
2675 6 2 ii 13 i 13 7 [ 2 2.101 +1.52 +0.960 
2682 1 4 l--ff 4 4 12 3 0 2 2.106 +1.44 +0.999 
2739 18 3 9 25 0 7 7 3 2 2.148 +i.01 +0.999 
2753 4 3 0 3 0 2 7 3 2 2.155 +1.09 +0.954 
2771 14 4 9 4 1 0 18 3 9 2.164 +1.12 +0.997 
2796 7 3 2 6 2 ii 13 1 13 2.183 +0.94 +0.857 
2838 i0 7 10 4 4 12 14 3 2 2.230 +1.73 +0.972 
2893 12 7 3 9 4 10 21 3 7 2.288 +2.64 +0.979 
2909 10 1 ii 13 1 13 3 0 2 2.297 +1.80 +0.992 
2918 5 1 2 i--O[ 4 5 0 2. 2.309 +1.19 +0.946 
2925 9 0 i-~ 4 4 12 5 4 3 2.323 +0.83 +0.898 
2941 ii 4 ii 16 4 9 5 0 2 2.335 +1.28 +0.999 
2960 14 3 2 18 3 9 4 0 7 2.366 +1.64 +0.990 
2963 19 4 7 5 0 2 '14"4 9 2.368 +1.46 +0.995 
2981 0 2 0 4i 0 4 i 0 2.388 +0.90 +0.837 
2995 13 1 7 2--[" 0 4 8 £ 1 ! 2.407 +i.37 +0.982 
2999 5 4 13 16 4 9 2_i_i0 4 2.413 +1.33 +0.990 
3001 9 7 1 5 ~ 3 i~ 3 2 2.414 +1.27 +0.996 
3020 6 i 7 4 1 0 2 0 7 2.445 +1.13 +0.717 
3028 1 0 6 4 0 7 5 0 1 2.463 +0.84 +1.000 
3091 5 4 ~ 9 4 I0 4 0 ~ 2.589 +1.22 +0.986 
3121 23 3 7 5 0 2 18 3 9 2.661 +1.67 +0.949 
3124 16 4 9 I'-94 7 3 0 2 2.672 +1.43 +0.999 
3130 1 0 9 4 0 7 5 0 2 2.691 +1.91 +1.000 
3131 10 0 3 3 0 2 7 0 5 2.694 +0.74 +1.000 
3138 19 0 7 2 0 3 21 0 4 2.702 +0.59 -i.000 
3139 lO 7 i0 9 7 i [ 0 9 2.703 +1.76 +0.990 
3142 17 3 0 3 0 2 14 3 2 2.709 +1.23 +0.982 
3153 ii 1 8 6 1 7 5 0 1 2.728 +1.12 +0.908 
3159 12 7 3 5 4 3 17 3 0 2.743 +0.97 +0.999 
3162 1 1 2 4 1 0 5 0 2 2.747 +1.22 +0.942 
3170 21 3 7 3 0 2 18 3 9 2.773 +1.18 +0.999 
3171 13 3 1.!1 18 3 9 5 0 2 2.775 +1.33 +0.969 
3182 4 4 12 9 4 i0 5 0 2 2.815 +1.73 +0.812 
3184 3 1 2 8 1 i ! 5 0 2 2.822 +1.53 +0.999 
3204 14 4 8 5 0 2 9 4 10 2.922 +1.67 +0.728 
3214 0 2 0 8 1 ii 8 [ Ii 2.974 +0.87 +0.998 
3217 9 7 ! 9 4 I0 18 3 9 2.999 +2.09 +0.994 
3218 17 4 7 3 0 2 14 4 9 3.013 +0.86 +0.995 
3258 16 0 5 5 0 1 2~ 0 4 3.375 +0.44 +i.000 
3259 7 1 2 4 1 0 3 0 2 3.375 +1.20 +0.974 
3263 14 7 3 10 7 10 ~ 0 7 3.426 +1.23 +0.996 
3267 10 0 1 5 0 2 50 ! 3.478 +0.75 +i.o0o 
3269 8 7 i0 4 0 ~ 12 7 3 3.493 +1.24 +0.939 
3282 9 0 5 ~ 0 2 4 0 7 3.861 +1.23 +1.000 
3283 5 0 2 2 0 0 3 0 2 3.888 +1.67 +1.000 
3289 14 7 3 9 7 1 5 0 2 4.034 +1.80 +0.975 
3291 2 0 7 7 0 5 5 0 2 4.190 +1.18 +1.000 
3294 13 1 13 5 0 2 8 1 Ii 4.250 +1.71 +0.953 
3299 4 0 7 7 0 5 3 0 2 4.812 +1.16 +1.000 
3305 2 0 3 5 0 1 3 0 2 6.470 +0.55 +I.000 
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The importance of  using calculated values of  the 
cosine invariants should perhaps be stressed. Other 
methods are strongly dependent on the fact that these 
cosines, for large A, are likely to be close to unity, 
but the inabilit,¢ to identify correctly those cosines 
whose values differ significantly from unity often leads 
to errors, particularly with complex structures. Re- 
stricting attention to those cosines whose values are 
definitely calculated to be + 1 or definitely calculated 
to be negative, as is done here, greatly reduces the 
likelihood of  error, as inspection of Table 1 shows. In 
addition, the systematic study of cosine invariants of  
special type, as required by the method of  strong 
enant iomorph discrimination,  is an essential feature 
of  the procedure and should also be emphasized. 

3. Determination of seventeen two-dimensional 
phases q)h01 

The values of  17 two-dimensional  phases ~0~o~ are 
listed in Table 2 in the order in which they were deter- 
mined. The method of phase determination is given in 
column 3 of  this table. Thus ~03o2 and ~050i were 
arbitrarily set equal to zero as is permitted by the 
recipe for origin specification in space group P2~ 
(Hauptman  & Karle, 1956). Again ~0200=180 ° was 
determined by means of  the ~ formula (Hauptman  & 
Karle, 1953). The phase ~02x,0,4= 180 ° was found from 
(o302 by means of  a recently secured formula for cosine 
invariants, cos(~0x+~2)(Hauptman,  1971, 1972). The 
phases rPTos and fP25,o,~ could not be directly deter- 
mined but  they were needed in the evaluation of  addi- 
t ional phases. Hence each was permitted to take on its 
two possible values and only the correct values (180 ° 
for each) are listed in Table 2. For the remaining phases, 
the serial number  of  the required cosine invariant,  as 
given in Table 1, is listed in the third column of Table 
2. Only the phase ~P~9,o,7 was incorrectly calculated, 
a consequence of  the negative cosine invariant  3138 
which was calculated to be +0.59 and mistakenly 
assumed to be + 1 (Table 1). 

Table 2. Values of 17 two-dimensional phases 
Phase determined Calculated True 

hk l  
3 0 2  
50i" 
2O3 
2OO 
5O2 

10,0,1 
21,0A 
16,0,5 
19,0,7 
7 0 ~  
4 0 7  
2 0 7  
90~  

10,0,3 
109 
106  

25,0,7 

[El by means of phase phase 
3.732 origin 0 ° 0 ° 
3.448 origin 0 0 
3"170 3305 0 0 
1.838 ~1 180 180 
3.574 3283 180 180 
1.779 3267 180 180 
3.453 ~302, cos(~1 +~2) 180 180 
1.787 3258 180 180 
1-556 3138 180 0 
2.866 ambiguous 180 180 
2.836 3299 180 180 
2.579 3291 0 0 
2.401 3282 0 0 
1-588 3131 180 180 
1.674 3130 0 0 
2.522 3028 180 180 
2 .291  ambiguous 180 180 

4. Determination of 32 three-dimensional phases which 
are enantiomorph independent 

In Table 3 are listed the values of 32 three-dimensional 
(i.e. k ¢ 0) phases, ~0,kt, in the order in which they were 
determined. The phase ~410 was arbitrarily set equal 
to 180 ° in accordance with the procedure for origin- 
fixing in space group P21. For the remaining phases, 
the serial numbers  of  the required cosine invariants,  as 
given in Table 1, are listed in the third column of 
Table 3. Since the values of  all the cosine invariants 
used in this calculation are, in accordance with Table 1, 
presumed to have the value + 1, every structure in- 
variant  cp~+Cpz+(a3 has the same value, 0, for both 
enant iomorphs  permitted by the observed structure 
factor magnitudes [El. Hence the calculated values (0 
or 180 °) of  all phases listed in Table 3 are enantio- 
morph  independent.  The true values of these thirty- 
two phases are listed in column 5 of  the table and the 
last column gives the er ro r  (@cale--@true) of  the calcu- 
lated phase. 

Table 3. Values of 32, enantiomorph independent, three- 
dimensional phases 

Phase determined Calculated True 
h k l [El by means of phase phase Error 
4 1 0 2.554 origin 180 ° 165 ° + 15 ° 
7 1 2 2"233 3259 180 -177 - 3  
1 1 2 1"897 3162 180 -175 - 5  
6 1 7 2.340 3020, 2534 180 -149 -31 

llr  1, 8 2.131 3153 180 -171 - 9  
121 1, 4 1.495 2212 0 3 - 3  
8, 1, 11 2"850 2279 180 -174 - 6  

13, 1, 13 2.630 3294 0 -12  +12 
3 1 9 1"747 3184 0 --2 +2 

13, 1, 7 1-542 2995 180 --159 --21 
I0, 1, 11 1"476 2909 0 --14 +14 
9 1 1- 1-454 2564 180 --177 --3 

10t 1, 4 1"630 2230 180 166 +14 
5 1 2 2"499 2918 0 4 --4 
6, 2, 11 2"255 2675 0 --2 +2 
7 3 2 2"320 2796 0 41 --41 
4 3 0 1-569 2753 0 5 --5 

14t 3, 2 1"526 2329 0 45 --45 
18t 3, ~ 2"548 2739 0 28 --28 
13, 3, 1-i" 1"921 3171 180 --171 --9 
21, 3, 7 1-838 3170 0 16 --16 
23, 3, 7 1"842 3121 180 --134 --46 
14, 3, 2 2"064 2960 180 --170 --10 
17, 3r 0 2.217 3142, 2016 180 --161 --19 
11, 3, 2I 1"590 2050 180 --179 --1 

0 2 0 2"309 2981, 3214, 2223 180 --176 --4 
14, 4 r 9 2"096 2771 0 11 --11 
19, 4, 7 1"993 2963 180 --168 --12 
16, 4, 9 2"265 3124 180 --168 --12 
17r 4, 7 2"428 3218 0 7 --7 
11, 4, iT 1.818 2941 0 27 -27  
5, 4, 13 1.945 2999 0 20 - 2 0  

5. Enantiomorph selection 

In accordance with the recently devised procedure 
(Hauptman  & Duax,  1972) for strong enant iomorph 
discrimination employing calculated cosine invariants 
and a class of  structure invariants with values + re~2, 
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approximately,  two orthogonal  classes, I and II, of  
phases ~P~4~ were tentatively identified. First, IEo8ol 
was observed to be moderately large (1.921). Second, 
using the modified tr iple-product  procedure (Haupt-  
man et al., 1969), the values of  all cosine invariants 

cos (~o~zt + ~0~ + ~0o8o), (5.1) 

with (see equation 2.4) 

A=0 .1586  IE~Z4tEos01 > 1-5 (5.2) 

were calculated. In accordance with the method of  
strong enant iomorph  discrimination, those cosines 
which were calculated to be greater than unity led to 
four phases ~0~4t which were placed unambiguously  
in Class I. Those cosines calculated to be most  nega- 
tive led to two phases (0n4t which were placed unambig- 
uously in Class II. The results are summarized in 
Table 4 which also lists, for comparison,  the true 
values of  the cosine invariants as obtained from the 
refined structure. 

Table 4. Tentative definition of the orthogonal 
Classes I and II of phases, ~Oh4l, via calculated 

cosine invariants 

Cos (~on~ + ~o~ + ~oo8o).lEoso[ = 1"921. 

Cos ((Ph~ + ~ + ~o8o) 
Class h 4 l IEI A Calculated True 

11,4, 1 2-506 1.914 + 1.44 +0.983 
I 17,4, 7 2.428 1.796 + 1-06 + 0.993 

10,4,1-0 2.320 1.640 + 1.61 +0.675 
16,4, 9 2.265 1 - 5 6 2  +2.14 +0.963 

II 21,4, 5 2.518 1 .931  -0.85 -0.860 
5 4 ~ 2.392 1.743 -0.23 -0.888 

Next, the membership of  Classes I and II was con- 
firmed and the classes themselves extended by calcu- 
lating appropriate  cosine invariants, 

cos (gh4t + ~0h'~V + ~0-h-~' ,0,-~-t ') ,  (5"3) 

in accordance with the procedure. Thus 

COSCa~¢ (~0ii,a,~ + ~0~0,4,i~ + ~0~09) = + 2"02, A = 1"544, (5"4) 

confirms the presence of  (fllltapi and (/91otati ~ in the 
same class (I). Again, since @16t4t9 and (/911t4t[ are in 
Class I, the values of  the calculated cosines, 

COScale (~142, "{" ~Ol6v~,t9 Jr" (/giTV0tll) : -{- 1.34, 
A= 1.568, (5.5) 

COSealo (~014ff. -~- ~Oiit4tl -q- ~010t0tl ) : + 1"03, 
A =  1.618, (5.6) 

require that  ~o14~ be placed in Class I, too. Next, since 
~o~6,4,~ and ~o~4~ are in Class I, 

COScale (~J.9t4,7 Jr- (PiSt~t9 + (P~0Y.) = + 1-43, 
A = 2.672, (5.7) 

cos¢~t¢ (~o~9~4,q + ¢pxz~ + ~o~,o,9) = + 1.87, 
A=1 .694 ,  (5.8) 

imply that  ~019,4,7 likewise belongs to Class I. Con- 
tinuing in this way the membership of  Class I was 
extended and firmly established. The final membership 
of Class II was firmly established in a similar way. The 
ten phases, ~oh4t, finally placed in Class I and the six 
phases, tPh4/, placed in Class II are shown in Table 5. 

Table 5. Final definition of  the orthogonal classes 
I and II of phases, ~Oh4Z, using Table 4 and calculated 

cosine invariants, 
cos (~0~4z + fPhqr + ~0-h-h',0,-l-V) 

Class h 4 l IEI ~true 
11,4, T 2.506 5 ° 
44 3 2"497 -152 

17,4, 7 2"428 7 
10,4,T0 2-320 - 15 

I 1 4 2 2.289 -178 
16,4, ~ 2.265 - 168 
14,4, ~ 2"096 11 
19,4, 7 1"993 - 168 
5,4,13 1 "945 20 

11,4,]']" 1 "818 27 
24,4, 4 3"627 89 
21,4, 5 2"518 90 

II 9,4,T0 2-406 71 
5 4 3 2.392 -95  

14,4, g 2-143 - 141 
4,4,T2 2.064 - 62 

Only one cosine invariant  directly connecting the 
Classes I and II had a sufficiently large A value to 
warrant  calculating the cosine. This was 

COScalc (~443 -t- ~09tT~t[~ ) + ~0i~t0t7 ) : "Jr" 0"30, 
A--  1.572, (5.9) 

sufficiently close to 0 to serve as addit ional  confirma- 
tion of  orthogonali ty.  

Having firmly established the or thogonal  Classes I 
and II of  phases ~0h4z, it could be inferred, in view of 
the theoretical basis, that  

(Oh1411-~Oh2]12"~q)_hl_h2,Ot_ll_12,~ +90  (5"10) 
and 

~gh1411"q-{O~271-12"q-{O_hl+h2,Ot_ll+12 ~, +90  °, (5"11) 

where ~oh14tl is an arbi t rary phase in Class I and 
tPh24t2 is an arbi t rary phase in Class II. In short, the 
invariants (5.10) and (5.11) constitute a class of  struc- 
ture invariants each member  of  which is approximately 
equal to + 90 ° and is therefore suitable for decisive 
enant iomorph  selection. The corresponding cosines 
constitute a class C of  65 cosine invariants whose 
values are approximately 0 and for which the average 
value of  A is 0.50. 

Inspection of the last six rows of  Table 3 shows that  
the ten phases (oh4t of  Class I must  have values equal 
to 0 or 180 °, approximately.  Hence the values of  
the six phases ~0a4z of  Class II must  be equal to + 90 
degrees, approximately.  As it turned out, values could 
be unambiguously  assigned to only six phases of  
Class I (Table 3) and to four phases of  Class II (§6). 
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However, the true values of all ten phases in Class I 
and all six phases in Class II are shown in the last 
column of Table 5 and, with minor exceptions, these 
show good agreement with the expected values, 0 
or 180 ° for Class I, + 90 ° for Class II. 

The stage was now set for the determination of the 
remaining phases, mostly enantiomorph dependent, to 
be used as input to the tangent procedures. 

6. Determination of 12 phases which are mostly 
enantiomorph dependent 

The values of the remaining twelve phases (all but one 
of which are enantiomorph dependent), needed for 
use in the tangent procedures, are listed in Table 6. 
In view of §5 and the description of Table 3, Table 6 
is self-explanatory. 

Table 6. Values of  12 phases, mostly enantiomorph inde- 
pendent 

Phase determined Calculated True 
h k  l IEI by means of  phase phase Error  
9,4,-i-0 2.406 E n a n t i o m o r p h  90 ° + 71 o + 19 ° 

14,4, ~ 2.143 3204 (Enan.)  - 9 0  - 140 + 5 0  
4,4,]'2 2-064 3182 (Enan.)  - 90 - 62 - 28 
5 4  ~ 2-392 3091 (Enan.)  - 9 0  - 9 5  + 5  
9,0,Y5 2-925 2925 0 0 0 
1,4,-i'~ 1.724 2682 - 90 - 57 - 33 

11,4,1-0 1.623 2599 - 9 0  - 149 + 5 9  
9 7  1 3.084 3001, 3217 + 9 0  +101  - 1 1  

12,7, 3 3.262 2893, 3159 + 9 0  + 109 - 19 
10,7,10 3.301 3139, 2838 + 9 0  + 1 1 3  - 2 3  
14,7, 3 2.370 3263, 3289 - 9 0  - 5 6  - 3 4  

8,7,10 2.380 3269 - 9 0  - 6 2  - 2 8  

7. Determination of remaining phases by the 
tangent procedures 

The 61 phases thus far determined were used as input 
to the tangent formula and modified tangent procedure 
(Weeks & Hauptman, 1971) to determine the values of 
452 phases. Modified and simple tangent figures of 
merit on the four runs required, due to the hOl reflec- 
tions of ambiguous phase, showed no preferred solu- 
tion. Inspection of phasing of some ~1 type reflections 
and the 020 and certain hll  phase values, strongly 
indicated by the phasing process, suggested the most 
promising solution. The 51 strongest peaks in that E 
map (using modified tangent phases) formed an oval. 
Structure factor calculations based upon those peaks 

gave an R value (defined as ZIIFol-lFclllZIFol) of 36 % 
for 5982 reflections. Two subsequent difference maps 
led to the unambiguous identification of the 78 non- 
hydrogen atoms of the structure. Three cycles of iso- 
tropic refinement on all nonhydrogen atoms reduced 
the R value to 15 %. 

When comparing the true phases, as determined 
from the structure, with the phases that led to the solu- 
tion, it was found that the average magnitude of the 
error in the 43 three-dimensional phases of the basis 
set was 18°. This good agreement suggested that an 
initial E map with more than 452 terms might give the 
full structure. To test this hypothesis, the 61 basis 
phases were again used as input to the modified 
tangent procedure in order to calculate 552 phases. In 
the initial E map using these 552 phases, 57 of the 60 
strongest peaks were found to be at an average dis- 
tance of 0.15 A from the refined atomic positions. 
17 of the remaining 21 atoms were also present in this 
initial 552 term E map at an average distance of 0-27 
A from refined positions. The four atoms not in the 
map were terminal carbons on isopropyl groups exhib- 
iting greatest thermal motion. 

The authors wish to express their thanks to Miss 
Janet Fisher and Dr Charles Weeks for writing the 
computer programs and to Dr Charles Wenner for 
supplying the crystals of valinomycin. 
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